Interpolace

Pokud se funkční hodnoty f( x i ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaaa@3A53@  funkce, zadané tabulkou:

x i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3804@

x 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIWaaabeaaaaa@37D0@

x 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaaa@37D1@

x 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaaa@37D2@

x n1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaa@39B1@

x n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3809@

(1)

y i =f( x i ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaakiabg2da9iaadAgacaGGOaGaamiEamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@3D7B@

y 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaaIWaaabeaaaaa@37D1@

y 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaaIXaaabeaaaaa@37D2@

y 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaaIYaaabeaaaaa@37D3@

y n1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaa@39B2@

y n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGUbaabeaaaaa@380A@

shodují v  n+1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@389D@ bodech [ x i , y i ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaaykW7caWG5bWaaSbaaSqaaiaadMgaaeqaaaGccaGLBbGaayzxaaaaaa@3E5E@  (uzlech interpolace) s hodnotou polynomu P n  ( x i ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaabccacaGGOaGaamiEamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@3C28@ , tj.

f( x i )= P n  ( x i ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaadcfadaWgaaWcbaGaamOBaaqabaGccaqGGaGaaiikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@4193@ , i=0, 1,, n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2da9iaaicdacaGGSaGaaeiiaiaaigdacaGGSaGaeSOjGSKaaiilaiaabccacaWGUbaaaa@3EE1@

(2)

a tyto hodnoty považujeme za přesné, použijeme pro náhradu funkce interpolační aproximaci nebo stručně interpolaci a sice nejčastěji interpolaci polynomem n-tého stupně (polynomiální interpolaci). Stupeň polynomu je tedy o jedna menší než je počet bodů v tabulce.

Tabulka (1) může též reprezentovat reálnou funkci (viz následující obrázek) definovanou v intervalu a,b MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeduuDJXwAKbYu51MyVXgaiuaacqWFPms4caWGHbGae8hlaWIaamOyaiab=PYiXdaa@4119@ . Tedy funkce y=f(x) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadAgacaGGOaGaamiEaiaacMcaaaa@3B33@  je zadaná buď předpisem nebo tabulkou.

Tabulkové body mohou být buď ekvidistantní (mezi body jsou stejné vzdálenosti) nebo na kroky tabulkových bodů neklademe žádné omezení. Ve většině případů jsou tabulkové body ekvidistantní.

Obr. 1

Obr. 1 je geometrickou interpretací výše uvedeného popisu.

P n  (x)= a n x n + a n x n1 +  a 1 x +   a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaabccacaGGOaGaamiEaiaacMcacqGH9aqpcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaaleqabaGaamOBaaaakiabgUcaRiaadggadaWgaaWcbaGaamOBaaqabaGcdaWgaaWcbaGaeyOeI0IaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgUcaRiablAciljaabccacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiaabccacqGHRaWkcaqGGaGaaeiiaiaadggadaWgaaWcbaGaaGimaaqabaaaaa@52F0@ . Hledáme takový polynom, aby platilo: P n  ( x 0 ) =  f( x 0 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaabccacaGGOaGaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacaqGGaGaaeypaiaabccacaqGGaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaaa@42CE@ , P n  ( x 1 ) =  f( x 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaabccacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacaqGGaGaaeypaiaabccacaqGGaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@42D0@ , …, P n  ( x n ) =  f( x n ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaabccacaGGOaGaamiEamaaBaaaleaacaWGUbaabeaakiaacMcacaqGGaGaaeypaiaabccacaqGGaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@4340@ . Tedy v daných uzlových bodech souhlasí hodnoty aproximační funkce s hodnotami aproximované funkce.

Získáme soustavu n+1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@389D@  rovni o n+1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@389D@  neznámých (jsou to koeficienty a i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaaa@380D@  ); x i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3824@  a  f( x i ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiiaiaadAgacaGGOaGaamiEamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@3B15@  jsou známé hodnoty. Soustavu lze jednoduše řešit, např. v aplikaci Excel, pomocí inverzní matice. Soustava je:

a n x 0 + a n x 0 + a 1 x 0 + a 0 = f( x 0 ) a n x 1 + a n x 1 + a 1 x 1 + a 0 = f( x 1 ) a n x n + a n x n + a 1 x n + a 0 = f( x n ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGcaaaaaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaacaWGUbaaaaGcbaGaey4kaScabaGaamyyamaaBaaaleaacaWGUbaabeaakmaaBaaaleaacqGHsislcaaIXaaabeaakiaadIhadaWgaaWcbaGaaGimaaqabaGcdaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaGcbaGaey4kaScabaGaeSOjGSeabaGaamyyamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGimaaqabaaakeaacqGHRaWkaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeyypa0dabaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaWGUbaaaaGcbaGaey4kaScabaGaamyyamaaBaaaleaacaWGUbaabeaakmaaBaaaleaacqGHsislcaaIXaaabeaakiaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaGcbaGaey4kaScabaGaeSOjGSeabaGaamyyamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacqGHRaWkaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeyypa0dabaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaqaaaqaaaqaaaqaaaqaaiabl6UinbqaaaqaaaqaaaqaaaqaaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaad6gaaeqaaOWaaWbaaSqabeaacaWGUbaaaaGcbaGaey4kaScabaGaamyyamaaBaaaleaacaWGUbaabeaakmaaBaaaleaacqGHsislcaaIXaaabeaakiaadIhadaWgaaWcbaGaamOBaaqabaGcdaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaGcbaGaey4kaScabaGaeSOjGSeabaGaamyyamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacqGHRaWkaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeyypa0dabaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaaaaa@8E41@

Je-li interpolační funkce tvořena lineárními kombinacemi funkcí sinkx,coskx MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaam4AaiaadIhacaGGSaGaaGPaVlGacogacaGGVbGaai4CaiaadUgacaWG4baaaa@41AE@ , kde k=0,1,2, MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiablAcilbaa@3D47@ , pak se jedná o interpolaci pomocí trigonometrických mnohočlenů či o trigonometrickou interpolaci.

Po získání příslušných koeficientů interpolační funkce můžeme zjistit snadno funkční hodnotu v jakémkoli bodě intervalu a,b MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeduuDJXwAKbYu51MyVXgaiuaacqWFPms4caWGHbGae8hlaWIaamOyaiab=PYiXdaa@4119@ .

Jiný způsob určení koeficientů interpolačního mnohočlenu je užití Lagrangeova tvaru interpolačního mnohočlenu:

L n (x)= (x x 1 )(x x 2 )(x x n ) ( x 0 x 1 )( x 0 x 2 )( x 0 x n ) y 0 + (x x 0 )(x x 2 )(x x n ) ( x 1 x 0 )( x 1 x 2 )( x 1 x n ) y 1 + + (x x 0 )(x x 1 )(x x i1 )(x x i+1 )(x x n ) ( x i x 0 )( x i x 1 )( x i x i1 )( x i x i+1 )( x i x n ) y i + + (x x 0 )(x x 1 )(x x n1 ) ( x n x 0 )( x n x 1 )( x n x n1 ) y n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGmbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiablAciljaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabeaakiaacMcaaeaacaGGOaGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiablAciljaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabeaakiaacMcaaaGaamyEamaaBaaaleaacaaIWaaabeaakiabgUcaRmaalaaabaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacqWIMaYscaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaGccaGGPaaabaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacqWIMaYscaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkaeaacqWIMaYscqGHRaWkdaWcaaqaaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeSOjGSKaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaiykaiablAciljaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabeaakiaacMcaaeaacaGGOaGaamiEamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGPaGaaiikaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiablAciljaacIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaGGPaGaaiikaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiaacMcacqWIMaYscaGGOaGaamiEamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaiaadMhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkaeaacqWIMaYscqGHRaWkdaWcaaqaaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeSOjGSKaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaacMcaaeaacaGGOaGaamiEamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGPaGaaiikaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiablAciljaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGPaaaaiaadMhadaWgaaWcbaGaamOBaaqabaaaaaa@025B@

(3)

 

Složitější úlohou interpolace, kterou se však nebudeme zabývat, je to že kromě uváděných podmínek (2), se ještě v některých uzlech předepisují derivace různých řádů interpolační funkce.

Příklad 1.

Najděte interpolační mnohočlen pro funkci zadanou tabulkou:

i MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36DC@

0

1

2

3

4

 

x i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3804@

0

1

2

3

4

(4)

yi = f(xi)

1

2

3

4

6

Řešení:

Hledaný mnohočlen bude čtvrtého stupně:

P 4  (x)= a 4 x 4 + a 3 x 3 + a 2 x 2 +  a 1 x +   a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaI0aaabeaakiaabccacaGGOaGaamiEaiaacMcacqGH9aqpcaWGHbWaaSbaaSqaaiaaisdaaeqaaOGaamiEamaaCaaaleqabaGaaGinaaaakiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaqGGaGaamyyamaaBaaaleaacaaIXaaabeaakiaadIhacaqGGaGaey4kaSIaaeiiaiaabccacaWGHbWaaSbaaSqaaiaaicdaaeqaaaaa@51E7@

Z podmínek

P 4  (0)=1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaI0aaabeaakiaabccacaGGOaGaaGimaiaacMcacqGH9aqpcaaIXaaaaa@3C4D@ ; P 4  (1)=2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaI0aaabeaakiaabccacaGGOaGaaGymaiaacMcacqGH9aqpcaaIYaaaaa@3C4F@ ; P 4  (2)=3 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaI0aaabeaakiaabccacaGGOaGaaGOmaiaacMcacqGH9aqpcaaIZaaaaa@3C51@ ; P 4  (3)=4 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaI0aaabeaakiaabccacaGGOaGaaG4maiaacMcacqGH9aqpcaaI0aaaaa@3C53@ ; P 4  (4)=6 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaI0aaabeaakiaabccacaGGOaGaaGinaiaacMcacqGH9aqpcaaI2aaaaa@3C56@

Získáme soustavu

0 4 a 4 + 0 3 a 3 + 0 2 a 2 + 0 a 1 + a 0 = 1 1 4 a 4 + 1 3 a 3 + 1 2 a 2 + 1 a 1 + a 0 = 2 2 4 a 4 + 2 3 a 3 + 2 2 a 2 + 2 a 1 + a 0 = 3 3 4 a 4 + 3 3 a 3 + 3 2 a 2 + 3 a 1 + a 0 = 4 4 4 a 4 + 4 3 a 3 + 4 2 a 2 + 4 a 1 + a 0 = 6 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabuWcaaaaaaqaaiaaicdadaahaaWcbeqaaiaaisdaaaGccaWGHbWaaSbaaSqaaiaaisdaaeqaaaGcbaGaey4kaScabaGaaGimamaaCaaaleqabaGaaG4maaaakiaadggadaWgaaWcbaGaaG4maaqabaaakeaacqGHRaWkaeaacaaIWaWaaWbaaSqabeaacaaIYaaaaOGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabgUcaRaqaaiaaicdacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaey4kaScabaGaamyyamaaBaaaleaacaaIWaaabeaaaOqaaiabg2da9aqaaiaaigdaaeaacaaIXaWaaWbaaSqabeaacaaI0aaaaOGaamyyamaaBaaaleaacaaI0aaabeaaaOqaaiabgUcaRaqaaiaaigdadaahaaWcbeqaaiaaiodaaaGccaWGHbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaey4kaScabaGaaGymamaaCaaaleqabaGaaGOmaaaakiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacqGHRaWkaeaacaaIXaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiabgUcaRaqaaiaadggadaWgaaWcbaGaaGimaaqabaaakeaacqGH9aqpaeaacaaIYaaabaGaaGOmamaaCaaaleqabaGaaGinaaaakiaadggadaWgaaWcbaGaaGinaaqabaaakeaacqGHRaWkaeaacaaIYaWaaWbaaSqabeaacaaIZaaaaOGaamyyamaaBaaaleaacaaIZaaabeaaaOqaaiabgUcaRaqaaiaaikdadaahaaWcbeqaaiaaikdaaaGccaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaey4kaScabaGaaGOmaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacqGHRaWkaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeyypa0dabaGaaG4maaqaaiaaiodadaahaaWcbeqaaiaaisdaaaGccaWGHbWaaSbaaSqaaiaaisdaaeqaaaGcbaGaey4kaScabaGaaG4mamaaCaaaleqabaGaaG4maaaakiaadggadaWgaaWcbaGaaG4maaqabaaakeaacqGHRaWkaeaacaaIZaWaaWbaaSqabeaacaaIYaaaaOGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabgUcaRaqaaiaaiodacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaey4kaScabaGaamyyamaaBaaaleaacaaIWaaabeaaaOqaaiabg2da9aqaaiaaisdaaeaacaaI0aWaaWbaaSqabeaacaaI0aaaaOGaamyyamaaBaaaleaacaaI0aaabeaaaOqaaiabgUcaRaqaaiaaisdadaahaaWcbeqaaiaaiodaaaGccaWGHbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaey4kaScabaGaaGinamaaCaaaleqabaGaaGOmaaaakiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacqGHRaWkaeaacaaI0aGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiabgUcaRaqaaiaadggadaWgaaWcbaGaaGimaaqabaaakeaacqGH9aqpaeaacaaI2aaaaaaa@9BC9@

tedy

a 0 = 1 a 4 + a 3 + a 2 + a 1 + a 0 = 2 16 a 4 + 8 a 3 + 4 a 2 + 2 a 1 + a 0 = 3 81 a 4 + 27 a 3 + 9 a 2 + 3 a 1 + a 0 = 4 256 a 4 + 64 a 3 + 16 a 2 + 4 a 1 + a 0 = 6 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabuWcaaaaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaiaadggadaWgaaWcbaGaaGimaaqabaaakeaacqGH9aqpaeaacaaIXaaabaGaamyyamaaBaaaleaacaaI0aaabeaaaOqaaiabgUcaRaqaaiaadggadaWgaaWcbaGaaG4maaqabaaakeaacqGHRaWkaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaey4kaScabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiabgUcaRaqaaiaadggadaWgaaWcbaGaaGimaaqabaaakeaacqGH9aqpaeaacaaIYaaabaGaaGymaiaaiAdacaWGHbWaaSbaaSqaaiaaisdaaeqaaaGcbaGaey4kaScabaGaaGioaiaadggadaWgaaWcbaGaaG4maaqabaaakeaacqGHRaWkaeaacaaI0aGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabgUcaRaqaaiaaikdacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaey4kaScabaGaamyyamaaBaaaleaacaaIWaaabeaaaOqaaiabg2da9aqaaiaaiodaaeaacaaI4aGaaGymaiaadggadaWgaaWcbaGaaGinaaqabaaakeaacqGHRaWkaeaacaaIYaGaaG4naiaadggadaWgaaWcbaGaaG4maaqabaaakeaacqGHRaWkaeaacaaI5aGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabgUcaRaqaaiaaiodacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaey4kaScabaGaamyyamaaBaaaleaacaaIWaaabeaaaOqaaiabg2da9aqaaiaaisdaaeaacaaIYaGaaGynaiaaiAdacaWGHbWaaSbaaSqaaiaaisdaaeqaaaGcbaGaey4kaScabaGaaGOnaiaaisdacaWGHbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaey4kaScabaGaaGymaiaaiAdacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaey4kaScabaGaaGinaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacqGHRaWkaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeyypa0dabaGaaGOnaaaaaaa@8206@

Soustavu lze zapsat v maticovém tvaru

Aa=b MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiaahggacqGH9aqpcaWHIbaaaa@3992@

kde A=[ 0 0 0 0 1 1 1 1 1 1 16 8 4 2 1 81 27 9 3 1 256 64 16 4 1 ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiabg2da9maadmaabaqbaeGGbuqbaaaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaqaaiaaigdaaeaacaaIXaaabaGaaGymaiaaiAdaaeaacaaI4aaabaGaaGinaaqaaiaaikdaaeaacaaIXaaabaGaaGioaiaaigdaaeaacaaIYaGaaG4naaqaaiaaiMdaaeaacaaIZaaabaGaaGymaaqaaiaaikdacaaI1aGaaGOnaaqaaiaaiAdacaaI0aaabaGaaGymaiaaiAdaaeaacaaI0aaabaGaaGymaaaaaiaawUfacaGLDbaaaaa@51F9@   b=[ 1 2 3 4 6 ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyaiabg2da9maadmaabaqbaeGabuqaaaaabaGaaGymaaqaaiaaikdaaeaacaaIZaaabaGaaGinaaqaaiaaiAdaaaaacaGLBbGaayzxaaaaaa@3D96@

Pak

a= A -1 b MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyaiabg2da9iaahgeadaahaaWcbeqaaiaah2cacaWHXaaaaOGaaCOyaaaa@3B39@ , kde A -1 =[ 0,04167 0,16667 0,25 0,16667 0,04167 0,41667 1,5 2 1,16667 0,25 1,45833 4,33333 4,75 2,33333 0,45833 2,08333 4 3 1,33333 0,25 1 0 0 0 0 ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqamaaCaaaleqabaGaaCylaiaahgdaaaGccqGH9aqpdaWadaqaauaabqyafuaaaaaabaGaaGimaiaacYcacaaIWaGaaGinaiaaigdacaaI2aGaaG4naaqaaiabgkHiTiaaicdacaGGSaGaaGymaiaaiAdacaaI2aGaaGOnaiaaiEdaaeaacaaIWaGaaiilaiaaikdacaaI1aaabaGaeyOeI0IaaGimaiaacYcacaaIXaGaaGOnaiaaiAdacaaI2aGaaG4naaqaaiaaicdacaGGSaGaaGimaiaaisdacaaIXaGaaGOnaiaaiEdaaeaacqGHsislcaaIWaGaaiilaiaaisdacaaIXaGaaGOnaiaaiAdacaaI3aaabaGaaGymaiaacYcacaaI1aaabaGaeyOeI0IaaGOmaaqaaiaaigdacaGGSaGaaGymaiaaiAdacaaI2aGaaGOnaiaaiEdaaeaacqGHsislcaaIWaGaaiilaiaaikdacaaI1aaabaGaaGymaiaacYcacaaI0aGaaGynaiaaiIdacaaIZaGaaG4maaqaaiabgkHiTiaaisdacaGGSaGaaG4maiaaiodacaaIZaGaaG4maiaaiodaaeaacaaI0aGaaiilaiaaiEdacaaI1aaabaGaeyOeI0IaaGOmaiaacYcacaaIZaGaaG4maiaaiodacaaIZaGaaG4maaqaaiaaicdacaGGSaGaaGinaiaaiwdacaaI4aGaaG4maiaaiodaaeaacqGHsislcaaIYaGaaiilaiaaicdacaaI4aGaaG4maiaaiodacaaIZaaabaGaaGinaaqaaiabgkHiTiaaiodaaeaacaaIXaGaaiilaiaaiodacaaIZaGaaG4maiaaiodacaaIZaaabaGaeyOeI0IaaGimaiaacYcacaaIYaGaaGynaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaaaGaay5waiaaw2faaaaa@9678@

a=[ 0,04167 0,25 0,45833 0,75 1 ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyaiabg2da9maadmaabaqbaeaHbuqaaaaabaGaaGimaiaacYcacaaIWaGaaGinaiaaigdacaaI2aGaaG4naaqaaiabgkHiTiaaicdacaGGSaGaaGOmaiaaiwdaaeaacaaIWaGaaiilaiaaisdacaaI1aGaaGioaiaaiodacaaIZaaabaGaaGimaiaacYcacaaI3aGaaGynaaqaaiaaigdaaaaacaGLBbGaayzxaaaaaa@4C1D@  tedy a 4 = 0,04167 a 3 = 0,25 a 2 = 0,45833 a 1 = 0,75 a 0 = 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeabbuWaaaaabaGaamyyamaaBaaaleaacaaI0aaabeaaaOqaaiabg2da9aqaaiaaicdacaGGSaGaaGimaiaaisdacaaIXaGaaGOnaiaaiEdaaeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyypa0dabaGaeyOeI0IaaGimaiaacYcacaaIYaGaaGynaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacqGH9aqpaeaacaaIWaGaaiilaiaaisdacaaI1aGaaGioaiaaiodacaaIZaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiabg2da9aqaaiaaicdacaGGSaGaaG4naiaaiwdaaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeyypa0dabaGaaGymaaaaaaa@561D@

Hledaný mnohočlen je MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35ED@ P 4  (x)=0,04167 x 4 +0,25 x 3 +0,45833 x 2 + 0,75x +  1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaI0aaabeaakiaabccacaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaGaaiilaiaaicdacaaI0aGaaGymaiaaiAdacaaI3aGaamiEamaaCaaaleqabaGaaGinaaaakiabgUcaRiabgkHiTiaaicdacaGGSaGaaGOmaiaaiwdacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGimaiaacYcacaaI0aGaaGynaiaaiIdacaaIZaGaaG4maiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaqGGaGaaGimaiaacYcacaaI3aGaaGynaiaadIhacaqGGaGaey4kaSIaaeiiaiaabccacaaIXaaaaa@5A71@

Příklad 2.

Funkce je dána tabulkou

i MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36DC@

0

1

2

3

 

x i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaaa@3804@

-2

-1

0

2

(5)

yi = f(xi)

5

-4

-5

-7

Určete interpolační mnohočlen ve tvaru (3).

L n (x)= (x x 1 )(x x 2 )(x x 3 ) ( x 0 x 1 )( x 0 x 2 )( x 0 x 3 ) y 0 + (x x 0 )(x x 2 )(x x 3 ) ( x 1 x 0 )( x 1 x 2 )( x 1 x 3 ) y 1 + (x x 0 )(x x 1 )(x x 3 ) ( x 2 x 0 )( x 2 x 1 )( x 2 x 3 ) y 2 + (x x 0 )(x x 1 )(x x 2 ) ( x 3 x 0 )( x 3 x 1 )( x 3 x 2 ) y 3 = (x+1)x(x2) (2+1)(2)(22) 5+ (x+2)x(x2) (1+2)(1)(12) (4)+ (x+2)(x+1)(x2) (+2)(1)(2) (5)+ (x+2)(x+1)x (2+2)(2+1)(2) (7)= (x+1)x(x2) 8 5+ (x+2)x(x2) 3 (4)+ (x+2)(x+1)(x2) 4 (5)+ (x+2)(x+1)x 24 (7)= - x 3 + x 2 +x-5 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaWabeaacaWGmbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaaeaacaGGOaGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaaaGaamyEamaaBaaaleaacaaIWaaabeaakiabgUcaRmaalaaabaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaabaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkaeaadaWcaaqaaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaqaaiaacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacaGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaacaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGPaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaacMcaaeaacaGGOaGaamiEamaaBaaaleaacaaIZaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGPaGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaacMcaaaGaamyEamaaBaaaleaacaaIZaaabeaakiabg2da9aqaamaalaaabaGaaiikaiaadIhacqGHRaWkcaaIXaGaaiykaiaadIhacaGGOaGaamiEaiabgkHiTiaaikdacaGGPaaabaGaaiikaiabgkHiTiaaikdacqGHRaWkcaaIXaGaaiykaiaacIcacqGHsislcaaIYaGaaiykaiaacIcacqGHsislcaaIYaGaeyOeI0IaaGOmaiaacMcaaaGaaGynaiabgUcaRmaalaaabaGaaiikaiaadIhacqGHRaWkcaaIYaGaaiykaiaadIhacaGGOaGaamiEaiabgkHiTiaaikdacaGGPaaabaGaaiikaiabgkHiTiaaigdacqGHRaWkcaaIYaGaaiykaiaacIcacqGHsislcaaIXaGaaiykaiaacIcacqGHsislcaaIXaGaeyOeI0IaaGOmaiaacMcaaaGaaiikaiabgkHiTiaaisdacaGGPaGaey4kaScabaWaaSaaaeaacaGGOaGaamiEaiabgUcaRiaaikdacaGGPaGaaiikaiaadIhacqGHRaWkcaaIXaGaaiykaiaacIcacaWG4bGaeyOeI0IaaGOmaiaacMcaaeaacaGGOaGaey4kaSIaaGOmaiaacMcacaGGOaGaeyOeI0IaaGymaiaacMcacaGGOaGaaGOmaiaacMcaaaGaaiikaiabgkHiTiaaiwdacaGGPaGaey4kaSYaaSaaaeaacaGGOaGaamiEaiabgUcaRiaaikdacaGGPaGaaiikaiaadIhacqGHRaWkcaaIXaGaaiykaiaadIhaaeaacaGGOaGaaGOmaiabgUcaRiaaikdacaGGPaGaaiikaiaaikdacqGHRaWkcaaIXaGaaiykaiaacIcacaaIYaGaaiykaaaacaGGOaGaeyOeI0IaaG4naiaacMcacqGH9aqpaeaadaWcaaqaaiaacIcacaWG4bGaey4kaSIaaGymaiaacMcacaWG4bGaaiikaiaadIhacqGHsislcaaIYaGaaiykaaqaaiabgkHiTiaaiIdaaaGaaGynaiabgUcaRmaalaaabaGaaiikaiaadIhacqGHRaWkcaaIYaGaaiykaiaadIhacaGGOaGaamiEaiabgkHiTiaaikdacaGGPaaabaGaaG4maaaacaGGOaGaeyOeI0IaaGinaiaacMcacqGHRaWkaeaadaWcaaqaaiaacIcacaWG4bGaey4kaSIaaGOmaiaacMcacaGGOaGaamiEaiabgUcaRiaaigdacaGGPaGaaiikaiaadIhacqGHsislcaaIYaGaaiykaaqaaiabgkHiTiaaisdaaaGaaiikaiabgkHiTiaaiwdacaGGPaGaey4kaSYaaSaaaeaacaGGOaGaamiEaiabgUcaRiaaikdacaGGPaGaaiikaiaadIhacqGHRaWkcaaIXaGaaiykaiaadIhaaeaacaaIYaGaaGinaaaacaGGOaGaeyOeI0IaaG4naiaacMcacqGH9aqpaeaacaGGTaGaamiEamaaCaaaleqabaGaaG4maaaakiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4bGaaiylaiaaiwdaaaaa@704A@

Výsledný polynom je tedy P 3 (x)=- x 3 + x 2 +x-5 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIZaaabeaakiaacIcacaWG4bGaaiykaiabg2da9iaac2cacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadIhacaGGTaGaaGynaaaa@43F4@

 

Obr. 2

Všimněte si shodné první derivace v uzlovém bodě x deriv MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGKbGaamyzaiaadkhacaWGPbGaamODaaqabaaaaa@3BCA@  na Obr. 2

Význam interpolace v současné době spočívá zejména v tom, že je východiskem pro některé další numerické metody jako například metody numerického integrování funkcí (ty budou v rámci tohoto modulu uvedeny) aj.

Polynomiální interpolace je stupně n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E1@ , když interpolační mnohočlen je stupně n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E1@ . Interpolace je lineární, tehdy, je-li interpolační mnohočlen stupně 1 nebo 0. Polynomiální interpolace je kvadratická resp. kubická, když je interpolační mnohočlen stupně 2 resp. 3.

Příklad 3.

Jaký je tvar Lagrangeova mnohočlenu, pro lineární interpolaci, jsou li dány hodnoty ( x i , y i ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamyEamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@3C3A@ , i=0,1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2da9iaaicdacaGGSaGaaGymaaaa@3A07@

Odpověď:

L n (x)= (x x 1 ) ( x 0 x 1 ) y 0 + (x x 0 ) ( x 1 x 0 ) y 1 = y 0 + y 1 y 0 x 1 x 0 (x x 0 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacaWGUbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaabaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaqaaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaakiaacMcaaaGaamyEamaaBaaaleaacaaIWaaabeaakiabgUcaRmaalaaabaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaqaaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcaaaGaamyEamaaBaaaleaacaaIXaaabeaakiabg2da9iaadMhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGimaaqabaaaaOGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaaa@698D@

Grafem funkce v kartézské soustavě souřadnic je přímka se směrnicí y 1 y 0 x 1 x 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIWaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaaaaaaa@3FA5@