Maticové iterační metody

Principem iteračních metod je postupné zpřesňování počátečního odhadu řešení. Iterační metody lze užívat pouze v případě, že odhady konvergují k přesnému řešení. Iterační proces se ukončuje v případě, že bylo dosaženo požadované přesnosti. Soustavu Ax=b MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiaaykW7caWH4bGaaCypaiaahkgaaaa@3B14@  rozepsanou

[ a 11 a 12 a 1n a 21 a 22 a 2n a n1 a n2 a nn ][ x 1 x 2 x n ]=[ b 1 b 2 b n ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafaqaegabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqWIVlctaeaacaWGHbWaaSbaaSqaaiaaigdacaWGUbaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqWIVlctaeaacaWGHbWaaSbaaSqaaiaaikdacaWGUbaabeaaaOqaaaqaaaqaaiabl6UinbqaaaqaaiaadggadaWgaaWcbaGaamOBaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGOmaaqabaaakeaacqWIVlctaeaacaWGHbWaaSbaaSqaaiaad6gacaWGUbaabeaaaaaakiaawUfacaGLDbaadaWadaqaauaabqyaeeaaaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeSO7I0eabaGaamiEamaaBaaaleaacaWGUbaabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabqyaeeaaaaqaaiaadkgadaWgaaWcbaGaaGymaaqabaaakeaacaWGIbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeSO7I0eabaGaamOyamaaBaaaleaacaWGUbaabeaaaaaakiaawUfacaGLDbaaaaa@6E84@

(1)

 

převedeme na ekvivalentní tvar vhodný pro iteraci: x=Hx+g MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEaiaah2dacaWHibGaaGPaVlaahIhacaWHRaGaaC4zaaaa@3CD5@ .

Iterační metody dělíme na metody stacionární, které mají iterační matici H MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisaaaa@36DE@  a vektor g MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zaaaa@36FD@  konstantní a na metody nestacionární. Většina iteračních metod je stacionárních - matice H MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisaaaa@36DE@  i vektor g MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4zaaaa@36FD@  se tedy po dobu výpočtu nemění. Pro analýzu i výpočet je to výhodné. U nestacionárních metod však lze urychlit konvergenci iteračních procesů.

Pak se jednobodová lineární stacionární iterační metoda dá charakterizovat předpisem:

x (i+1) =H x i +g MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCaaaleqabaGaaiikaiaadMgacqGHRaWkcaaIXaGaaiykaaaakiaah2dacaWHibGaaGPaVlaahIhadaahaaWcbeqaaiaadMgaaaGccaWHRaGaaC4zaaaa@4215@

Matice H MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisaaaa@36DE@  je iterační matice. Pokud je splněno kriterium konvergence: jestliže je některá z norem matice H MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCisaaaa@36DE@  menší než jedna, pak metoda prosté iterace konverguje. Posloupnost iterací  x (i+1) =H× x i +g MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCaaaleqabaGaaiikaiaadMgacqGHRaWkcaaIXaGaaiykaaaakiaah2dacaWHibGaaC41aiaahIhadaahaaWcbeqaaiaadMgaaaGccaWHRaGaaC4zaaaa@41EA@ , pro i=1,2, MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqWIMaYsaaa@3BDB@  vede k řešení soustavy. Počáteční iterace x (0) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCaaaleqabaGaaiikaiaaicdacaGGPaaaaaaa@394E@  (zahájení výpočtu) je v případě konvergentního procesu libovolná; často se užívá nulový vektor. Ukončení výpočtu provádíme mnohdy podmínkou x k x k1 z <δ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaaakiaawMa7caGLkWoadaWgaaWcbaGaamOEaaqabaGccqGH8aapcqaH0oazaaa@43EF@ , kde x k x k1 z MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaaakiaawMa7caGLkWoadaWgaaWcbaGaamOEaaqabaaaaa@413C@  je jedna z vektorových norem a číslo δ>0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2exLMBb50ujbqeguuDJXwAKbacfaGae8Npa4JaaGimaaaa@3E33@ . Jiný způsob je stanovení podmínky, kolik výpočtů máme provést. V současnosti se užívají různé iterační formule: Jacobiova, Gaussova-Saidlova, atd.

Postačující podmínkou konvergence je vztah H q<1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaacaWGibaacaGLjWUaayPcSdGaeyizImQaamyCaiabgYda8iaaigdaaaa@3E6B@  Pak posloupnost { x (k) } k=0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacaWH4bWaaWbaaSqabeaacaGGOaGaam4AaiaacMcaaaaakiaawUhacaGL9baadaqhaaWcbaGaam4Aaiabg2da9iaaicdaaeaacaaMc8UaaGPaVlaaykW7cqGHEisPaaaaaa@44AE@  určená ze vztahu x (k+1) =H× x k +g MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCaaaleqabaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaahIeacaWHxdGaaCiEamaaCaaaleqabaGaam4AaaaakiabgUcaRiaahEgaaaa@425C@  konverguje při libovolné volbě vektoru x (0) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCaaaleqabaGaaiikaiaaicdacaGGPaaaaaaa@394E@ .

 

i MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36DC@  -tá rovnice v (1) je

a i1 x 1 + a i2 x 2 ++ a in x n += b i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGPbGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWGPbGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeS47IWKaey4kaSIaamyyamaaBaaaleaacaWGPbGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeyypa0JaamOyamaaBaaaleaacaWGPbaabeaaaaa@4D15@ , i=1,2,,n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqWIMaYscaGGSaGaamOBaaaa@3D7E@

Pokud a i,1 0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGPbGaaiilaiaaigdaaeqaaOGaeyiyIKRaaGimaaaa@3BE4@ , získáme

x i = 1 a ii ( b i j=1 ji n a ij x j ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaadggadaWgaaWcbaGaamyAaiaadMgaaeqaaaaakiaacIcacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadIhadaWgaaWcbaGaamOAaaqabaaaeaqabeaacaWGQbGaeyypa0JaaGymaaqaaiaadQgacqGHGjsUcaWGPbaaaeaacaWGUbaaniabggHiLdGccaGGPaaaaa@4FC9@ , i=1,2,,n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqWIMaYscaGGSaGaamOBaaaa@3D7E@

Z i MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36DC@  -té rovnice jsme spočítali i MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36DC@  -tou neznámou

Jacobiova iterační formuli pro k=1,2, MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqWIMaYsaaa@3BDD@

x i (k+1) = 1 a ii ( b i j=1 ji n a ij x j (k) ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaDaaaleaacaWGPbaabaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaaaakiabg2da9maalaaabaGaaGymaaqaaiaadggadaWgaaWcbaGaamyAaiaadMgaaeqaaaaakiaacIcacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadIhadaqhaaWcbaGaamOAaaqaaiaacIcacaWGRbGaaiykaaaaaqaabeqaaiaadQgacqGH9aqpcaaIXaaabaGaamOAaiabgcMi5kaadMgaaaqaaiaad6gaa0GaeyyeIuoakiaacMcaaaa@55FA@ , i=1,2,,n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqWIMaYscaGGSaGaamOBaaaa@3D7E@

maticově

x (k+1) =H× x k +g MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEamaaCaaaleqabaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaahIeacaWHxdGaaCiEamaaCaaaleqabaGaam4AaaaakiabgUcaRiaahEgaaaa@425C@

Existuje efektivnější algoritmus: Gaussova-Seidelova metoda. Ta je ve srovnání s Jacobiho metodou odlišná v tom, že vypočtenou iteraci první neznámé ihned použijeme k výpočtu druhé neznámé.

Podrobně se s postupem výpočtu seznámíte ve studijním článku „Výukový program v Delphi“.